Biomechanical finite element analysis of small diameter and short dental implants: extensive study of commercial implants.
نویسندگان
چکیده
In recent years, mini and short dental implants have become increasingly popular as treatment alternatives for patients in whom the bone is unsuitable for a standard implant. As yet, no detailed scientific analysis of the mechanical and biomechanical impact of the reduced diameter and length of these implants has been published. We analysed 21 commercially available implants (13 mini, eight short) with respect to material behaviour and load transfer to the alveolar bone, using finite element (FE) analysis. Following μCT scanning and geometry reconstruction, FE models of mini implants and short implants were inserted into idealised bone segments. Mini implants were analysed in the anterior mandibular jaw region at a force of 150 N under immediate loading, using a contact analysis in the FE software package Marc Mentat 2007. Short implants were inserted in posterior bone segments and analysed in the osseointegrated state at an occlusal force of 300 N. Von Mises stresses (up to 1150 MPa) in mini implants partly exceeded the ultimate strength. Implant diameter and geometry had a pronounced effect on stresses in the cortical plate (up to 266 MPa). Strains in spongy bone and stresses in cortical bone around short implants were markedly increased compared to those in standard implants. An increased risk of bone damage or implant failure may be assumed in critical clinical situations.
منابع مشابه
Evaluating the impact of length and thread pitch on the stress distribution in dental implants and surrounding bone using finite element method
longevity of osseointegrated implants are intensely influenced by biomechanical factors. Control of these factors prevents mechanical complications, which include fracture of screws, components, or materials veneering the framework. In this study, the impact of length and threads pitch of dental implants on the stress distribution and maximum Von Mises stress in implant-abutment complex and ja...
متن کاملImmediately loaded Xive and Nisastan implants the effect of macro-design on distribution of strain in surrounding bone: A finite element analysis
Immediately loaded Xive and Nisastan implants the effect of macro-design on distribution of strain in surrounding bone: A finite element analysis Dr. A. Fazel * - Dr. SH. A. Alai ** - Dr. M. Rismanchian *** *Associate Professor of Prosthodontics Dept., Faculty of Dentistry and Dental Research Center, Tehran University / Medical Sciences. **Assistant Professor of Prosthodontics Dept., Faculty of...
متن کاملمقایسه بیومکانیکی ایمپلنت دندانی تیتانیوم خالص با زیرکونیوم -5/2% نایوبیوم پس از کاشت به روش اجزای محدود
Background and Aims: Improving dental implantation conditions in order to reduce the failure is always desirable for researchers. The aim of this study was to compare two different materials of dental implants from the viewpoint of biomechanical effect after placement and loading in the mandible. Materials and Methods: A 3D model of mandible was designed in the MIMICS 10.01 software. Then,...
متن کاملEffect of Abutment Angulation and Material on Stress and Strain Distributions in Premaxillary Bone: A Three-Dimensional Finite Element Analysis
Background and Aim: Dental implants with angled abutments are often inserted in the anterior maxillary region due to the status of the residual ridge and aesthetic considerations. The purpose of this study was to assess stress and strain distributions in the premaxillary bone around dental implants by means of finite element analysis (FEA). Materials and Methods: Four three-dimensional (3D) fi...
متن کاملEffect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis
This study aims to validate, using finite element analysis (FEA), the design concept by comparing the fatigue behavior of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials corresponding to different human activities: standing up, normal walking and climbing stairs under dynamic loadings to find out which of all these models have a better performance in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomedizinische Technik. Biomedical engineering
دوره 57 1 شماره
صفحات -
تاریخ انتشار 2010